3.18.45 \(\int \frac {1}{\sqrt {d+e x} \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=84 \[ \frac {2 \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{\sqrt {e} \sqrt {c d^2-a e^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {660, 205} \begin {gather*} \frac {2 \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{\sqrt {e} \sqrt {c d^2-a e^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/(Sqrt[e]
*Sqrt[c*d^2 - a*e^2])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 660

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=(2 e) \operatorname {Subst}\left (\int \frac {1}{2 c d^2 e-e \left (c d^2+a e^2\right )+e^2 x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )\\ &=\frac {2 \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{\sqrt {e} \sqrt {c d^2-a e^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 97, normalized size = 1.15 \begin {gather*} \frac {2 \sqrt {d+e x} \sqrt {a e+c d x} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d^2-a e^2}}\right )}{\sqrt {e} \sqrt {c d^2-a e^2} \sqrt {(d+e x) (a e+c d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTan[(Sqrt[e]*Sqrt[a*e + c*d*x])/Sqrt[c*d^2 - a*e^2]])/(Sqrt[e]*Sqrt[c*d^
2 - a*e^2]*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.33, size = 115, normalized size = 1.37 \begin {gather*} -\frac {4 \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {d+e x} \sqrt {c d^2-a e^2}}{e \sqrt {a e (d+e x)-\frac {c d^2 (d+e x)}{e}+\frac {c d (d+e x)^2}{e}}-\sqrt {c d e} (d+e x)}\right )}{\sqrt {e} \sqrt {c d^2-a e^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(-4*ArcTan[(Sqrt[e]*Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])/(-(Sqrt[c*d*e]*(d + e*x)) + e*Sqrt[-((c*d^2*(d + e*x))/
e) + a*e*(d + e*x) + (c*d*(d + e*x)^2)/e])])/(Sqrt[e]*Sqrt[c*d^2 - a*e^2])

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 235, normalized size = 2.80 \begin {gather*} \left [-\frac {\sqrt {-c d^{2} e + a e^{3}} \log \left (-\frac {c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2} - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d^{2} e + a e^{3}} \sqrt {e x + d}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right )}{c d^{2} e - a e^{3}}, -\frac {2 \, \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {c d^{2} e - a e^{3}} \sqrt {e x + d}}{c d e^{2} x^{2} + a d e^{2} + {\left (c d^{2} e + a e^{3}\right )} x}\right )}{\sqrt {c d^{2} e - a e^{3}}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[-sqrt(-c*d^2*e + a*e^3)*log(-(c*d*e^2*x^2 + 2*a*e^3*x - c*d^3 + 2*a*d*e^2 - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2
 + a*e^2)*x)*sqrt(-c*d^2*e + a*e^3)*sqrt(e*x + d))/(e^2*x^2 + 2*d*e*x + d^2))/(c*d^2*e - a*e^3), -2*arctan(sqr
t(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d^2*e - a*e^3)*sqrt(e*x + d)/(c*d*e^2*x^2 + a*d*e^2 + (c*d^2*e
 + a*e^3)*x))/sqrt(c*d^2*e - a*e^3)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)), x)

________________________________________________________________________________________

maple [A]  time = 0.09, size = 91, normalized size = 1.08 \begin {gather*} -\frac {2 \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}\, \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2),x)

[Out]

-2/(e*x+d)^(1/2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)/(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)*arctanh((c*
d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)*e)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {d+e\,x}\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int(1/((d + e*x)^(1/2)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \sqrt {d + e x}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/(sqrt((d + e*x)*(a*e + c*d*x))*sqrt(d + e*x)), x)

________________________________________________________________________________________